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The main aim of our work is the studying of combinatorial (or finite) Radon transform. Main
notions have been formulated by Bolker in paper [1], where the Radon transform on k-element
subsets of a finite set and on k-subspaces in a n-dimensional projective (or affine) space over
a finite field was considered. Bolker found some sufficient conditions for the injectivity of this
Radon transform and obtained some general inversion formulae (but without explicit expressions
of coefficients) for above-mentioned cases.

In Section 1 of our paper we obtain necessary and sufficient conditions for the existence
of an inversion formula for Radon transform on polyhedrons satisfying hypotheses of the Euler
theorem. When an inversion formula exists, we present an algorithm that reconstructs a function
defined on vertexes by means of sums of its values at the ends of each edge, i.e. by means of its
Radon transform on edges.

In Section 2 we give explicit expressions for coefficients in Bolker’s formula [1] for the Radon
transform on k-element subsets of a n-element set (in [2] this formula was obtained in another
way).

In Section 3 we generalize Bolker’s formula to a Boolean.

In Section 4 we introduce a new variant of the Radon transform on a Boolean and obtain an
inversion formula for this case.

We thank M.I. Graev and V.F. Molchanov for useful advices and discussions.

Let us introduce some notations and agreements.
For a finite set A, we denote by |A| the number of elements of A and by L(A) the linear
space of complex valued functions on A. Introduce on L(A) the standard inner product

(0 1) = > o(a)(a).
acA

Then L(A) is a Hilbert space (of dimension |A]).

Let B be a subset of A. Then by dp we denote the characteristic function of B. It is an
element of L(A). Note that the delta-function concentrated at a point a € A is the characteristic
function of the one-element set {a}, i.e. d, = (4}

We use the following notation (we prefer al™ to the Pochhammer symbol (a),,) for general-
ized powers (shifted factorials):

d™=a@a+1)...(a+m—-1), a"™ =ala—1)...(a —m+1).

1 Inversion formulae on polyhedrons

Let M be a regular (Platonic) polyhedron. Denote by V', E, F sets of vertexes, edges and faces
of M respectively. Define a transform R : L(V) — L(E) as follows:

(R)) =) f(2),
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where z € V, y € E. Let us call R the Radon transform.
The problem is to find an inversion formula for R, if possibly.

Theorem 1.1 The inversion formula for Radon transform does exist for each regular polyhe-
dron, except of the cube.

The theorem can be generalized to the so-called Euler polyhedrons. We say that a polyhedron
M is an Euler polyhedron if
V| —|El+|F| = 2.

An example is a polyhedron, homeomorphic to a sphere, every face of which is homeomorphic
to a disc.

Theorem 1.2 The inversion formula for Radon transform for Euler polyhedron does exist if
and only if this polyhedron contains at least one face with odd number of edges.

This theorem is also proved in [3].

2 Inversion formulae on finite sets. The first variant

Let X be a set with n elements, Y a family of subsets of X. Define a Radon transform R :
L(X) = L(Y) by

(RHW) =D _ f(z). (1)
rcy
In particular, we have
(Réa)(y) = |[ANy]| (2)

For z € X, denote by G(z) the set of elements y € Y containing this element z. Then by (2)
we have

Let {6} and {d,} be the standard bases consisting of -functions in L(X) and L(Y), re-
spectively. The matrix of the Radon transform in these bases coincides with the (0, 1)-incidence
matrix of X with Y.

We put on Y the following condition of regularity [1]. Let

1) the number of elements in G(z) does not depend on z: |G(z)| = « for all z € X;;

2) |G(z) NG(z')| =B # aforall z #2'

Let us call these conditions 1) and 2) the B-conditions. These conditions are standard for
block designs in combinatorics.

If the B-conditions are satisfied then the Radon transform is injective [1] (it is the same that
the matrix of R has rank |X]).

Let R* be the adjoint transform to the Radon transform R, it is a map L(Y) — L(X) such
that

(Rf,») = (f, Ep),
where inner products are taken in L(X) and L(Y) respectively. It is given by

(Bo)2)= D o). (4)

y€G(z)
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Let Y be the set of all k-element subsets of X. The number of elements in Y is equal to (Z)
In this case the B-conditions are satisfied, with

n—1 n—2
w=(ioa) 2= (o)
so that the Radon transform R is invertible. Applying the transform R* to (3), we obtain
" n—1 n—2 n—2 n—2 n—2
s = ((201) - (25) e ()= (G0 G2) @
whence
k-1

Now it is easy to obtain the inversion formula for R: expand an arbitrary function f € L(X)
with respect to the basis {d;}:

n—2\""_, k—1

=Y f(@)ds (7)
zeX
and substitute (6) in (7), we obtain
n—2\"" N k-1
1= (323 mRr-Eu, )

where

w(f) =Y f(a)

zeX

is the total weight of the function f. Let us express w(f) in terms of Rf. Similarly to (2) we

have
(R*6p)(z) =|Bnz|, BCY.

o = (7))

Setting here B =Y, we obtain

or
Ry = (: B i)aX
Therefore 1
=10 =(321) v, (10)

z€X
where w* is the total weight of the function Rf, i.e.

W*(Rf) = (Rf)(v)-
yey
Substituting (10) in (8) we get

/= (’,j ) B (#oRs - g;ll—w*uzf)) . (11)

It can be rewritten in the operator form:

n—2\""! k-1
— * T
E (k—l) (R n—1 )R’

where E is the identity operator, I* the operator L(Y) — L(X) whose matrix consists only from
units.
In our paper [3] formula (11) is obtained in another way.
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3 Inversion formulae on finite sets. The second variant

Let X be a set with n elements (points) again. Denote by Y* the set of all k-element subsets
of X, k =0,1,2,...,n (so that Y = §,Y" = {X}). Define a transform (an ”integration”)
Ry : L(Y*) — L(YY), k <1, by

(Ruef)(y) = Zf ), zeYk yevl
zCy

Notice that Ry is the identity operator E on L(Y*).

If k+1 > n, then |Y*| > |Y!], so that Ry, has a nontrivial kernel, hence an inversion formula.
for Ry, does not exist. So we consider k& +{ < n. Then Ry is injective. The principal case is
k+1=n. Then |Y*| = |Y!|, and Ry is an isomorphism. To this case we can reduce the case
k 4+ < n, here the inversion formula can be written in different forms.

Theorem 3.1 Let 1 < k <!, k+1=mn. The following inversion formula for Ry, takes place:

-1k — k)ml
m=(1) Tt T o (12)

lzNy|=k—m
This theorem can be formulated in another way. Define an operator R L(Yl) — L(Y*) by
B = Y o).
lzNyl=p

Then for 1 < k < I, k+1 = n, there is the following decomposition of the operator E:

ET S =B )
2= (u2) X e

The proof of the theorem is given in our paper [2].

4 Inversion formulae on finite sets. The third variant

Here we write a formula that recovers a function on Y* by its "integrals” (R f)(y) over y € Y?!
using all [ > k.
The adjoint operator to Ry is an operator Ry : L(Y"') — L(Y*) defined by

(Ru)(@) =Y _oy), zeY*, yevh
zCy

Theorem 4.1 Let 1 < k < n/2. Each function f € L(Y*) is recovered by its integrals Ry f,
I >k, in the following way:

n—k

f@) =Y (=17 (B s j Ry jnf) (),

i=1

In the operator form this formula can be written as:

n—k
E =Y (=1Y*'Ry 1 ;iRuyjn (13)
1

.
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Proof. Let [ > k. Let us compute the composition Ag; = Ry Ry;,. We have

(Auf)@) =D flu)

zCyyOu

where z,u € Y*,y € Y'. Invert the order of summations, then

(Apif) (@ Zf > | (14)

yD(zUu)

Let |zNu| =k—s,5s=0,1,...,k. Then the complements of the set zUu in X and in y consist
of n —k — s and | — k — s points respectively. Therefore, the inner sum in (14) is equal to the
amount of ways by which we can take | — k — s points from n — k — s ones. Hence

k
W@ =Y (1270 T sw.

s=0 feNul=k—s

Let us take the alternated sum of Ag; over [:

n k n
S 0@ =30 Y (01500 S w6

=k s=0 l=k+s |zNu|=k—s

This sum is equal to zero, since the alternated sum of numbers in a line of the Pascal triangle
is zero if the line consists of more than one numbers. The latter is provided by the condition
k < n/2. So we have

n
> (=1 A =0, (16)
=k
which is just (13) because Ay, = E. OJ

Remark. Let k > n/2. Then there exists s = 0,1,...,k such that s = n — k. For this s the
sum over [ in (15) consists of only one term equal to 1. Instead of (16) we obtain

YDA @) = DM Y f(u).

=k |zNu|=2k—n
Therefore, instead of (13) we get

n—k

E =Y (-1 Ry jRsjp + ()" *RG ™.
j=1
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